ARTICLE

doi:10.1038/nature09922

Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

Zeneng Wang^{1,2}, Elizabeth Klipfell^{1,2}, Brian J. Bennett³, Robert Koeth¹, Bruce S. Levison^{1,2}, Brandon DuGar¹, Ariel E. Feldstein^{1,2}, Earl B. Britt^{1,2}, Xiaoming Fu^{1,2}, Yoon–Mi Chung^{1,2}, Yuping Wu⁴, Phil Schauer⁵, Jonathan D. Smith^{1,6}, Hooman Allayee⁷, W. H. Wilson Tang^{1,2,6}, Joseph A. DiDonato^{1,2}, Aldons J. Lusis³ & Stanley L. Hazen^{1,2,6}

PRESENTED BY: CHRISTIAN FAY, KRYSTLE ONG, AND LUKE POTTER FEBRUARY 17, 2020

Study rational

- The purpose of the study was to determine if there was a link between gut-flora phospholipid metabolism and risk of atherosclerosis
- Currently there is known relationships to CVD for blood cholesterol and triglycerides, but little is known about how lipids and phospholipids affect the parthenogenesis of CVD
- Prior studies have claimed that there is a possible link to CVD parthenogenesis from infectious agents, but studies have failed to make a positive link
- Based on previous studies using both a learning and validation cohorts of human plasma samples they were able to identify 18 analyses that would be used for the remainder of the study

Sample preparation/analytical platform

- Lipids were extracted using a chloroform:methanol method
- Metabolites were analysed after running through a phenyl column using a cohesive HPLC with a PE Sciex API triple quadrupole mass spectrometer
- Targeted analysis was used
 - Metabolites isolated from HPLC were vacum dried and dissolved in water
 - Redisolved metabolites were put back through the phenyl column with a HLPC gradient
 - 0.2% formic acid over 2 min
 - 18% acetonitrile containing 0.2% formic acid over 18 min and further 100% acetonitrile containing 0.2% formic acid over 3 min
- GC/MS and TMAO
 - m/z 76 also included initial reduction by titanium (III) chloride47 and further reaction with 2,2,2trichloroethylchloroformate
 - J&W scientific DB-1 column for separations
 - LC/MS/MS and NMR
- LC/M/MS
 - Used for TMAO, choline, and betaine

Method critiques

- No good explanation on how the samples were normalized
- Not clear on how metabolites were analyzed for the initial studies identifying the metabolites studied
- Would have been nice to see untargeted approach to problem to see potential other targets
- Based on previous papers, would have been nice to see additional data analysis softwares used to analyze the data
- Not clear on the parameters used for the analysis

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

| Company | Continuation | Continuat

TMAO

m/z

given analyte

